Quick Start Guide:

USB-Link™ 2 Mobile RP1210 Drivers for Android and iOS

Document Overview

This document describes the basic setup and operation for using the USB-Link™ 2 Mobile RP1210 API on
Android and iOS. The document is divided into the following sections:

Android Overview

— Step 1: Android Load Library from Java

— Step 2: Android RP1210 API Setup

— Step 3: Copy INI Files to Data Path

— Step 4: Set Data Path in RP1210 Drivers IOCTL 0x102

— Step 5: Android Discovery IOCTL 0x100

— Step 6: Bluetooth Connect on Android

— Step 7: Wi-Fi Connect on Android

iOS Overview

— Step 1: i0OS RP1210 API Setup

— Step 2: i0S Discovery IOCTL 0x100
— Step 3: Bluetooth Connect on iOS

— Step 4: Wi-Fi Connect on iOS

RP1210 Logging Overview

Quick Start Guide: USB-Link™ 2 Mobile RP1210 Drivers for Android and iOS Page 1

NEXIQ

TECHNOLOGIES®

Android Overview

Android requires the Java application to load the library, nuln2r32.so, from Java. Then uncompress and copy
the INI files from the package to a data directory accessible by the RP1210 drivers. After that find Bluetooth
or Wi-Fi devices to connect with and make a connection.

NOTE: The Android drivers require that the libc++_shared.so library that is included in the SDK be
installed on the device in the same folder as the nuln2r32.so library.

In practice, the RP1210 program accessing RP1210 should not run on the main thread (GUI thread).
Otherwise the responsiveness of the application will suffer and Android may decide to kill the application.

Step 1: Android Load Library from Java

The following call must be made from Java:

System.loadLibrary("nuln2r32");

so that the Java_OnLoad() function is called and the Java virtual machine pointer is copied in the
nuln2r32.so RP1210 library: Otherwise, Bluetooth® will not function.

Step 2: Android RP1210 API Setup

The RP1210 APl is resolved from the dynamic library using the following code sample. The API functions are
typedefed in rp1210_base.h and in Rp1210Test.cpp.

Two additional API calls, NexiqSetBluetoothAddress and NexigSetDataPath, are also used to set the
Bluetooth MAC address and to set the uncompressed INI files location respectively.

RP1210ConnectProc RP1210 ClientConnect = 0;
RP1210DisconnectProc RP1210 ClientDisconnect = 0;
RP1210ReadMessageProc RP1210 ReadMessage = 0;
RP1210SendMessageProc RP1210 SendMessage = 0;
RP1210SendCommandProc RP1210_SendCommand = 0;
RP1210ReadDetailedVersionProc RP1210_ReadDetailedVersion = 0;
RP1210ReadSerialNumberProc RP1210 ReadSerialNumber = 0;
RP1210GetErrorMsgProc RP1210 GetErrorMsg = 0;
RP1210GetLastErrorMsgProc RP1210 GetLastErrorMsg = 0;
RP1210GetHardwareStatusProc RP1210 GetHardwareStatus = 0;
RP1210IoctlProc RP1210 Toctl = O;

RP1210ReadVersionProc RP1210 ReadVersion = 0;

void nuln2r32 SetupAPI (void)
{
void * g dll handle = dlopen("libnuln2r32.so",RTLD GLOBAL|RTLD NOW) ;

RP1210 ClientConnect = (RP1210ConnectProc) dlsym(g dll handle,"RP1210 ClientConnect");
RP1210_ClientDisconnect = (RP1210DisconnectProcdlsym(g_dll_handle,"RP1210_ClientDisconnect");
RP1210 ReadMessage = (RP1210ReadMessageProc)dlsym(g _dll handle,"RP1210_ ReadMessage");
RP1210_ SendMessage = (RP1210SendMessageProc)dlsym(g _dll handle,"RP1210_ SendMessage");
RP1210_SendCommand = (RP1210SendCommandProc)dlsym(g dll handle,"RP1210 SendCommand") ;
RP1210 ReadDetailedVersion = (RP1210ReadDetailedVersionProc)

dlsym(g_dll handle,"RP1210_ ReadDetailedVersion");
RP1210_ReadSerialNumber = (RP1210ReadSerialNumberProc)

dlsym(g_dll handle,"RP1210 ReadSerialNumber");
RP1210_GetErrorMsg = (RP1210GetErrorMsgProc)dlsym(g dll handle,"RP1210 GetErrorMsg");
RP1210_GetLastErrorMsg = (RP1210GetLastErrorMsgProc)

dlsym(g_dll handle,"RP1210_ GetLastErrorMsg");
RP1210 GetHardwareStatus = (RP1210GetHardwareStatusProc)

dlsym(g_dll handle,"RP1210 GetHardwareStatus");

Quick Start Guide: USB-Link™ 2 Mobile RP1210 Drivers for Android and iOS Page 2

NEXIQ

TECHNOLOGIES®

RP1210 Toctl = (RP1210IoctlProc) dlsym(g dll handle,"RP1210 TIoctl");
RP1210 ReadVersion = (RP1210ReadVersionProc)dlsym(g _dll handle,"RP1210 ReadVersion");

Quick Start Guide: USB-Link™ 2 Mobile RP1210 Drivers for Android and iOS Page 3

NEXIQ

TECHNOLOGIES®

Step 3: Copy INI Files to Data Path

The files usbl2map.ini, nuin2r32_internal.ini, and nuln2r32.ini should be placed in the assets/Files folder of
the Android project. Then the files need to be uncompressed and copied to the data path so that the native
C++ libraries can access them with standard file io calls.

Use the following code from a fragment that has access to the Context via getActivity():

Context ctx = getActivity();
try {
String[] files = ctx.getAssets().list("Files");

for(int i = 0; i < files.length; i++)
{
CopyFileToDataPath (files[i]);
}
} catch (IOException e) {
e.printStackTrace () ;

}

private void CopyFileToDataPath (String fname)

{
// copy compressed file from apk assets folder to private
// data folder for read/write in C/C++
InputStream input;

try {
String path fname = "Files/" + fname;
input = ctx.getAssets().open(path fname);
int size = input.available();

byte[] buffer = new byte[size];
input.read (buffer);
input.close();

FileOutputStream outputStream;
try(
outputStream = ctx.openFileOutput (fname, Context.MODE PRIVATE) ;
outputStream.write (buffer);
outputStream.close () ;
}
catch (Exception e) {
e.printStackTrace();

}
} catch (IOException e)

{

e.printStackTrace () ;

}

Step 4: Set Data Path in RP1210 Drivers IOCTL 0x102

From a Java Context get the data path as:

Context ctx = getActivity();
String data path str = ctx.getFilesDir().getPath()

Pass this Java string to native code via a native call with parameter jstring str_path. Then convert this string
to a UTF8 string, fill in the SDATA_PATH struct and then call RP1210_loctl()

typedef struct _SDATA PATH
{

unsigned char *DataPath;
} SDATA PATH;

Quick Start Guide: USB-Link™ 2 Mobile RP1210 Drivers for Android and iOS Page 4

NEXIQ

TECHNOLOGIES®

SDATA PATH s_data path;

const char* temp path = pEnv->GetStringUTFChars(str_path, NULL);
strcpy (log path, temp path);

strcpy ((char*)data path, temp path);
s _data path.DataPath = data path;

RP1210 Toctl (0, IOCTL_SET DATA PATH,&s data path,0);

After the RP1210 drivers have access to the uncompressed INI files and know their location, the application
can make calls using the RP1210 API. Generally the RP1210_loctl with IOCTL_DISCOVERY will be used
first. Afterwards, the RP1210_ClientConnect call will be made after the MAC address has been set for
Bluetooth.

Step 5: Android Discovery IOCTL 0x100

#define PACKED _ attribute_ ((packed, aligned (1)))
#define RP1210 DISCOVERY MAX ENTRY LENGTH (256)

struct Rpl2l10Discovery
{

unsigned int scan_interval sec;
unsigned int max_entries;
} PACKED;

typedef struct Rpl210Discovery RP1210 DISCOVERY;

struct RP1210DiscoveryResult
{

unsigned int num_entries found;
char buf[0]; // allocated buffer start
} PACKED;

typedef struct RP1210DiscoveryResult RP1210_ DISCOVERY RESULT;

void TestDiscovery (void)

{
RP1210 DISCOVERY discovery;
discovery.scan_interval sec = 5; // 5 second Wi-Fi scan interval
discovery.max entries = 10; // scan for up to 10 devices

// allocate space for returned resulting structure
RP1210 DISCOVERY RESULT *discovery result = (RP1210 DISCOVERY RESULT *)
malloc(sizeof (unsigned int) +
RP1210_DISCOVERY MAX ENTRY LENGTH * discovery.max_entries);

ret val = RP1210 Toctl(0, IOCTL_DISCOVERY, &discovery, discovery result);

for (int k = 0; k < discovery result->num entries found; k++)
{
char *p = discovery result->buf;
p += k * RP1210 DISCOVERY MAX ENTRY LENGTH;
#ifdef ANDROID

__android log print (ANDROID LOG_INFO,"Example App","%d. = %s",k, p);
#else
printf ("%d. %s\n", k, p);
#endif
Quick Start Guide: USB-Link™ 2 Mobile RP1210 Drivers for Android and iOS Page 5

NEXIQ

TECHNOLOGIES®

Results for Android:
0. UsBL2 1,1,0,00:07:80:1D:33:FD
1. USBL2 202,202,0,00:07:80:1D:22:45
2. USBL2 482,482,0,192.168.10.100
3. USBL2 59,59,1,192.168.10.12
Results are formatted as "unique_id,status_byte,discovery_string"

e unique_id = unique identifier for product.
o status byte = 0 if available or 1 if busy.
e discovery_string = parameter passed in to protocol connect string to connect to USB-Link™ 2.

Step 6: Bluetooth Connect on Android:

The Bluetooth results above will only be for previously paired devices. To pair with a device, go to the
Android Bluetooth settings screen and select a discovered USB-Link™ 2 to pair to it.

short n_ret;
n ret = RP1210 ClientConnect (0, 2, "J1708:DiscoveryString=00:07:80:1D:22:45", 32768, 32768, 0);

Step 7: Wi-Fi Connect on Android:

Use the IP address in the DiscoveryString protocol connect parameter to connect to a Wi-Fi device on the
currently connected network.

short n_ret;
n ret = RP1210 ClientConnect (0, 3, "J1708:DiscoveryString=192.168.10.100", 32768, 32768, 0);

After this RP1210 API calls can be used as if the development environment is a Windows machine.

Quick Start Guide: USB-Link™ 2 Mobile RP1210 Drivers for Android and iOS Page 6

NEXIQ

TECHNOLOGIES®

i0OS Overview

Unlike Android, iOS does not compress the INI files; therefore, the drivers just need a copy of them. This is
handled in the drivers as long as the INI files are located in the package as shown in the example application
in the "Supporting Files" folder.

Libraries libnexiq_rp1210.a (iOS RP1210 library) and library libc++.tbd (c++ standard libary) need to be
linked with the application. libnexiq_rp1210.a is built against libc++.

The application accessing RP1210 library functions must not run on the main thread (GUI thread), otherwise
there will be a GUI responsiveness penalty.

The iOS RP1210API is setup following the example code given later on. After that, Bluetooth and Wi-Fi
devices to connect with can be discovered and a connection to a USB-Link™ 2 can be made. In the
Bluetooth case, if no DiscoveryString is given, the first available connected USB-Link™ 2 will be the one
connected to.

Step 1: i0OS RP1210 API Setup

The RP1210 APl is resolved from the statically linked library using the following code sample. The API
function prototypes and typedefs are in rp1210_base.hpp.

RP1210ConnectProc RP1210 ClientConnect = 0;
RP1210DisconnectProc RP1210 ClientDisconnect = 0;
RP1210ReadMessageProc RP1210 ReadMessage = 0;
RP1210SendMessageProc RP1210 SendMessage = 0;
RP1210SendCommandProc RP1210 SendCommand = 0;
RP1210ReadDetailedVersionProc RP1210 ReadDetailedVersion = 0;
RP1210ReadSerialNumberProc RP1210 ReadSerialNumber = 0;
RP1210GetErrorMsgProc RP1210 GetErrorMsg = 0;
RP1210GetLastErrorMsgProc RP1210 GetLastErrorMsg = 0;
RP1210GetHardwareStatusProc RP1210 GetHardwareStatus = 0;
RP1210IoctlProc RP1210 Toctl = 0;

RP1210ReadVersionProc RP1210 ReadVersion = 0;

void nuln2r32 SetupAPI (void)

{
RP1210 ClientConnect = nuln2r32 RP1210 ClientConnect;
RP1210 ClientDisconnect = nuln2r32 RP1210 ClientDisconnect;
RP1210 ReadMessage = nuln2r32 RP1210 ReadMessage;
RP1210_SendMessage = nuln2r32 RP1210_ SendMessage;
RP1210_SendCommand = nuln2r32 RP1210 SendCommand;
RP1210 ReadDetailedVersion = nuln2r32 RP1210 ReadDetailedVersion;
RP1210 ReadSerialNumber = nuln2r32 RP1210 ReadSerialNumber;
RP1210_GetErrorMsg = nuln2r32 RP1210 GetErrorMsg;
RP1210 GetLastErrorMsg = nuln2r32 RP1210 GetLastErrorMsg;
RP1210 GetHardwareStatus = nuln2r32 RP1210 GetHardwareStatus;
RP1210 Toctl = nuln2r32 RP1210 Ioctl;
RP1210 ReadVersion = nuln2r32 RP1210 ReadVersion;

Quick Start Guide: USB-Link™ 2 Mobile RP1210 Drivers for Android and iOS Page 7

NEXIQ

TECHNOLOGIES®

Step 2: iOS Discovery IOCTL 0x20003

Following the example in section "Android Discovery loctl 0x20003", the following will be returned on an iOS
device.

Results for iOS:

. USBL2 1,1,0,1

. USBL2 202,202,0,202

. USBL2 482,482,0,192.168.10.100
. USBL2 59,59,1,192.168.10.12

w N = O

The discovery string parameters can be either serial numbers or IP addresses. Therefore, the calling
program can differentiate them by looking for a period ('.") to determine an IP address.

Step 3: Bluetooth Connect on iOS:

The Bluetooth results above will only be of USB-Link™ 2 devices that are currently connected to the iOS
device via the iOS Bluetooth Settings screen. This is also where pairing takes place for new USB-Link™ 2s
that are unknown to the iOS device.

short n_ret;
n ret = RP1210 ClientConnect (0, 2, "J1708:DiscoveryString=202", 32768, 32768, 0);

An alternative method for connecting to an USB-Link™ 2 using Bluetooth on iOS is to not specify the
DiscoveryString. This will connect to the first USB-Link™ 2 connected via Bluetooth in the iOS Bluetooth
Settings screen.

short n_ret;
n_ret = RP1210_ClientConnect (0, 2, "Jl708", 32768, 32768, 0);

Step 4: Wi-Fi Connect on iOS:

Use the IP address in the DiscoveryString protocol connect parameter to connect to a Wi-Fi device on the
currently connected network.

short n ret;
n_ret = RP1210 ClientConnect (0, 3, "J1708:DiscoveryString=192.168.10.100", 32768, 32768, 0);

After this RP1210 API calls can be used as if the development environment is a Windows machine.

Quick Start Guide: USB-Link™ 2 Mobile RP1210 Drivers for Android and iOS Page 8

NEXIQ

TECHNOLOGIES®

RP1210 Logging Overview
RP1210 logging can be enabled via the SET LOG LEVEL IOCTL 0x101.

typedef struct _SLOG_LEVEL

{
unsigned long Debuglevel;
unsigned char *DebugFilePath;
unsigned long DebugFilePathLength;
unsigned long DebugMode;
unsigned long DebugFileSize;

} SLOG_LEVEL;

SLOG_LEVEL slog;

//set up slog

short ret val = RP1210 Ioctl (0, IOCTL SET LOG LEVEL, &slog, NULL);

Different logging options can be set up by configuring following the RP1227 specification.

On Android, the logging will be written to the LogCat debug window with the tag “RP1210_LOG.” On iOS the
logging will be written to the debug window.

A log file named nuln2r32.log will be written to the DebugFilePath specified.

On Android, the file can be retrieved with Android Studio and Device File Explorer. The log file for the SDK
example is stored in /data/data/application_name/files/, where application_name is com.nexiq.rp1210test
for the Android Studio example and com.nexiq.rp1210example for the Xamarin example.

To retrieve the file from an iOS device with MacOS Catalina or later, conect the device to the Mac via USB
and click on the device under Locations in Finder. Then select the disclosure triangle to the left of the iOS
app name to show the nuln2r32.log file. Copy the file to the Mac to view it.

Quick Start Guide: USB-Link™ 2 Mobile RP1210 Drivers for Android and iOS Page 9

NEXIQ

TECHNOLOGIES®

	Document Overview
	Android Overview
	Step 1: Android Load Library from Java
	Step 2: Android RP1210 API Setup
	Step 3: Copy INI Files to Data Path
	Step 4: Set Data Path in RP1210 Drivers IOCTL 0x102
	Step 5: Android Discovery IOCTL 0x100
	Step 6: Bluetooth Connect on Android:
	Step 7: Wi-Fi Connect on Android:

	iOS Overview
	Step 1: iOS RP1210 API Setup
	Step 2: iOS Discovery IOCTL 0x20003
	Step 3: Bluetooth Connect on iOS:
	Step 4: Wi-Fi Connect on iOS:

	RP1210 Logging Overview

